MULTIFUNCTION VOLTAGE AND FREQUENCY PROTECTION RELAY

TYPE

UM30-A

OPERATION MANUAL
INDEX

1 General utilization and commissioning directions 3
 1.1 Storage and transportation 3
 1.2 Installation 3
 1.3 Electrical connection 3
 1.4 Measuring inputs and power supply 3
 1.5 Outputs loading 3
 1.6 Protection earthing 3
 1.7 Setting and calibration 3
 1.8 Safety protection 3
 1.9 Handling 3
 1.10 Maintenance 4
 1.11 Fault detection and repair 4
2 General characteristics and operation 4
 2.1 Power supply 4
 2.2 Operation and Algorithms 5
 2.2.1 Input quantities 5
 2.2.2 F24 – Dual level Overfluxing 6
 2.2.3 F81 – Dual level over/under frequency 7
 2.2.4 F27/59 – Dual level 3-phase over/under voltage 8
 2.2.5 F27d/59d – Over/under voltage Sequence Voltage 9
 2.2.6 F59s – Negative Sequence Overvoltage 9
 2.2.7 F59uo – Dual level Zero Sequence Overvoltage 9
3 Controls and measurements 10
4 Signalization 11
5 Output relays 12
6 Serial communication 12
7 Digital inputs 13
8 Test 13
9 Keyboard and display operation 14
10 Reading of measurements and recorded parameters 15
 10.1 ACT. MEAS (Actual measure) 15
 10.2 LAST TRIP (Last trip) 15
 10.3 TRIP NUM (Trip number) 16
11 Reading of programmed settings and relay’s configuration 16
12 Programming 17
 12.1 Programming of functions settings 17
 12.2 Programming the configuration of output relay 19
13 Manual and automatic test operation 20
 13.1 W/O TRIP 20
 13.2 WithTRIP 20
14 Maintenance 20
15 Power frequency insulation test 20
16 Electrical characteristics 21
17 Connection diagram (Standard Output) 22
 17.1 Connection Diagram (Double Output) 22
18 Wiring the serial communication bus 23
19 Time current curves V/Hz 24
20 Direction for pcb’s draw-out and plug-in 25
 20.1 Draw-out 25
 20.2 Plug-in 25
21 Overall dimensions / Mounting 26
22 Keyboard operational diagram 27
23 Setting’s form 28
1. General utilization and commissioning directions

Always make reference to the specific description of the product and to the Manufacturer's instruction. Carefully observe the following warnings.

1.1 - STORAGE AND TRANSPORTATION

must comply with the environmental conditions stated on the product’s instruction or by the applicable IEC standards.

1.2 - INSTALLATION

must be properly made and in compliance with the operational ambient conditions stated by the Manufacturer.

1.3 - ELECTRICAL CONNECTION

must be made strictly according to the wiring diagram supplied with the Product, to its electrical characteristics and in compliance with the applicable standards particularly with reference to human safety.

1.4 - MEASURING INPUTS AND POWER SUPPLY

carefully check that the value of input quantities and power supply voltage are proper and within the permissible variation limits.

1.5 - OUTPUTS LOADING

must be compatible with their declared performance.

1.6 - PROTECTION EARTHING

When earthing is required, carefully check its effectiveness.

1.7 - SETTING AND CALIBRATION

Carefully check the proper setting of the different functions according to the configuration of the protected system, the safety regulations and the co-ordination with other equipment.

1.8 - SAFETY PROTECTION

Carefully check that all safety means are correctly mounted, apply proper seals where required and periodically check their integrity.

1.9 - HANDLING

Notwithstanding the highest practicable protection means used in designing M.S. electronic circuits, the electronic components and semiconductor devices mounted on the modules can be seriously damaged by electrostatic voltage discharge which can be experienced when handling the modules. The damage caused by electrostatic discharge may not be immediately apparent but the design reliability and the long life of the product will have been reduced.

The electronic circuits reduced by M.S. are completely safe from electrostatic discharge (8 KV IEC 255.22.2) when housed in their case; withdrawing the modules without proper cautions expose them to the risk of damage.
a. Before removing a module, ensure that you are at the same electrostatic potential as the equipment by touching the case.

b. Handle the module by its front-plate, frame, or edges of the printed circuit board. Avoid touching the electronic components, printed circuit tracks or connectors.

c. Do not pass the module to any person without first ensuring that you are both at the same electrostatic potential. Shaking hands achieves equipotential.

d. Place the module on an antistatic surface, or on a conducting surface which is at the same potential as yourself.

e. Store or transport the module in a conductive bag.

More information on safe working procedures for all electronic equipment can be found in BS5783 and IEC 147-OF.

1.10 - MAINTENANCE

Make reference to the instruction manual of the Manufacturer; maintenance must be carried-out by specially trained people and in strict conformity with the safety regulations.

1.11 - FAULT DETECTION AND REPAIR

Internal calibrations and components should not be altered or replaced. For repair please ask the Manufacturer or its authorised Dealers.

Misapplication of the above warnings and instruction relieves the Manufacturer of any liability.

2. GENERAL

The measured quantities are supplied from 3 Wye-connected system’s P.Ts to the 3 input transformers; the zero sequence voltage is built-up internally. The relay is normally supplied for 100V phase-to-phase input. Any different input voltage is available on request. The rated input voltage is marked on the relay’s P.C. board as well as on the connection diagram printed on its enclosure. Make electric connection in conformity with this diagram and check that input voltages are same as reported on the diagram and on the test certificate.

The auxiliary power is supplied by a built-in interchangeable module fully isolated and self-protected.

2.1 - POWER SUPPLY

The relay can be fitted with two different types of power supply module:

- \(24V(-20\%) / 110V(+15\%)\) a.c.
- \(80V(-20\%) / 220V(+15\%)\) a.c.
- \(24V(-20\%) / 125V(+20\%)\) d.c.
- \(90V(-20\%) / 250V(+20\%)\) d.c.

Before energising the unit check that supply voltage is within the allowed limits.
2.2 – Operation and Algorithms

2.2.1 – Input quantities

System Frequency

The relay can be programmed to work at Rated Frequency 50Hz or 60Hz. (Frequency measuring range from 40Hz through 70Hz)

Voltage inputs

The relay measures the Phase-to-Neutral voltages “EA, EB, EC”; and computes the phase-to-phase voltages as vector summation of the relevant phase-to-neutral voltages:

\[U_A (U_{AB} = \bar{E}_A - \bar{E}_B) \]
\[U_B (U_{BC} = \bar{E}_B - \bar{E}_C) \]
\[U_C (U_{CA} = \bar{E}_C - \bar{E}_A) \]

The above values are directly displayed as primary voltages at the high voltage side of the system Potential Transformers. To make the relay properly working with any P.T., when programming the relay settings, we have to input the value of the P.Ts. Rated Primary Phase-to-Phase Voltage “UnP” (adjustable from 0.1kV to 655kV) as well as the P.Ts. Rated Secondary Phase-to-Phase Voltage “UnS” (adjustable from 100V to 400V).

Positive and Negative Sequence Components

Based on the measurement of \(\bar{E}_A, \bar{E}_B, \bar{E}_C \) the relay computes the Positive Sequence Component “Ed” and the Negative Sequence Component “Es” of the three-phase System.

These components are displayed as % of the rated Phase-to-Neutral voltage \(\text{En} \left[\frac{\text{Un}}{\sqrt{3}} \right] \)

Zero Sequence Residual Voltage (3Vo)

The Relay computes the Zero Sequence Residual voltage “Uo” as the vector summation of the three phase-to-neutral voltage phasors.

\[Uo = 3Vo = \bar{E}_A + \bar{E}_B + \bar{E}_C \]
2.2.2 - F24 – Dual level Overfluxing (see curve § 19)

The relay computes the ratio \(\Phi = \frac{V}{Hz} \) of the input voltage to input frequency and compares it to the relay rated value \(\frac{Un}{Fn} \).

1F 24: Inverse Time element

- Minimum pick-up level : \(1\Phi > = (1 - 2) \frac{Un}{Fn} \), step 0.1pU

- Time multiplier : \(K = (0.5 - 5) \), step 0.1

- Trip time delay : \(t = \frac{K}{\left(\frac{V}{Hz} - 1\Phi > \right)} + 0.5 \) (see curve §19)

- Operation blocked : \((1\Phi >) = \) Dis

2F 24: Definite Time element

- Minimum pick-up level : \(2\Phi > = (1 - 2) \frac{Un}{Fn} \), step 0.1pU

- Independent time delay : \(t2\Phi = (0.1 - 60)s \), step 0.1s

- Operation blocked : \((2\Phi >) = \) Dis

For both levels:

- Undervoltage inhibition : \(U < 0.1Un \)
2.2.3 - F81 - Dual level over/under frequency

1F 81: First frequency element f'

- Minimum Pick-up level frequency difference: \(f' = (0.05-9.99)\text{Hz}, \text{step } 0.01\text{Hz} \)
- Independent trip time delay: \(1f' = (0.1-60)\text{s}, \text{step } 0.1\text{s} \)
- Operation mode: \((Fn +/- f') \)

The function can be programmed to operate as:

- Overfrequency (Fn + f') : operates when the frequency rises above the rated value [Fn] by more than \(f'\) Hz. \(f \geq (Fn+f')\text{Hz} \)
- Underfrequency (Fn - f) : operates when the frequency drops below the rated value [Fn] by more than \([f']\text{Hz} \). \(f \leq (Fn-[f'])\text{Hz} \)
- Frequency balance (Fn +/- f') : operates when frequency differs from rated value by more than \([f']\text{Hz} \). \((Fn-[f'])\text{Hz} \geq f \geq (Fn+[f'])\text{Hz} \)

- Operation blocked: \((Fn = \text{Dis}) \)
- Undervoltage inhibition: \(U < 0.1U_n \)

2F F81: Second frequency element f"

It operates same as the first element; the programmable parameters are:

- Pick-up level: \(f'' = (0.05-9.99)\text{Hz}, \text{step } 0.01\text{Hz} \)
- Independent trip time delay: \(tf'' = (0.1-60)\text{s}, \text{step } 0.1\text{s} \)
- Operation mode: \((Fn +/- f'') \)
2.2.4 - F27/59 : Dual level 3-phase over/under voltage

1F 27-59 : First voltage element u'

- Minimum Pick-up level voltage difference level : \(u' = (5-50)\% \text{Un} \), step 1\%
- Independent trip time delay : \(tu' = (0.1-60) \text{s} \), step 0.1s
- Operation mode : (Un +/- u')

The function can be programmed to operate as :

- Overvoltage (Un + u') : operates when any phase voltage \(E_x \) exceeds the rated value \(\sqrt[3]{\text{Un}} \)

 \[
 \frac{\sqrt{3} \cdot E_x}{\sqrt[3]{\text{Un}}} \cdot 100 \geq (100 + [u'])\%
 \]

- Undervoltage (Un – u') : operates when any phase voltage \(E_x \) drops below the rated value \(\sqrt[3]{\text{Un}} \)

 \[
 \frac{\sqrt{3} \cdot E_x}{\sqrt[3]{\text{Un}}} \cdot 100 \leq (100 - [u'])\%
 \]

- Voltage balance (Un +/- u') : operates when any phase voltage differs from the rated value more then [u']%

 \[
 (100 - [u'])\% \geq \frac{\sqrt{3} \cdot E_x}{\sqrt[3]{\text{Un}}} \cdot 100 \geq (100 + [u'])\%
 \]

- Operation blocked : (Un = Dis)

2F 27-59 : Second voltage element u''

It operates same as the first element; the programmable variables are :

- Pick-up level : \(u'' = (5-50)\% \text{Un} \), step 1\%
- Independent trip time delay : \(tu'' = (0.1-60) \text{s} \), step 0.1s
- Operation mode : (Un +/- u'')
2.2.5 - F27d/59d : Over/under voltage Positive Sequence Voltage

- Minimum Pick-up level voltage difference level : \(Ed = (5-90)\% En, \) step 1%
- Independent trip time delay : \(tEd = (0.1-60)s, \) step 0.1s
- Operation mode : \((Edn +/ - Ed) \)

The function can be programmed to operate as:

- Overvoltage \((Edn + Ed) \) : operates when the Positive Sequence voltage Component exceeds the set value: \(Ed \geq (En + [Ed]) \)
- Undervoltage \((Edn - Ed) \) : operates when the Positive Sequence voltage Component drops below the set value: \(Ed \leq (En - [Ed]) \)
- Voltage balance \((Edn +/ - Ed) \) : operates when the Positive Sequence voltage Component exceed the set limits:
 \[(En - [Ed]) \geq Ed \geq (En + [Ed]) \]
- Operation blocked : \([Edn = Dis] \)

2.2.6 - F59s : Negative Sequence Overvoltage

- Minimum Pick-up level : \(Es = (1-99)\% En, \) step 1\%En
- Independent trip time delay : \(tEs = (0.1-60)s, \) step 0.1s
- Operates when : \(Es \geq [Es] \)
- Operation blocked : \((Es = Dis) \)

2.2.7 – F59Uo – Dual level Zero Sequence Overvoltage

As already explained the relay computes the Zero Sequence Residual voltage \(Uo = 3Vo \) as vector summation of the three phase-to-neutral phasors. The relay is also capable to discriminate which is the phase where the Earth Fault occurred and this indication is given in the Event Recording file (See § 10.2) where the cause of tripping is displayed.

F64 – First element

- Minimum pick-up level : \(Uo> = (1-99)\% Un, \) adjustable in steps of 1\%Un
- Independent trip time delay : \(tO> = (0.05-60)s, \) adjustable step of 0.05/0.1s

F64 – Second element

- Minimum pick-up level : \(Uo>> = (1-99)\% Un, \) adjustable in steps of 1\%Un
- Independent trip time delay : \(tO>> = (0.05-9.9)s, \) adjustable step of 0.05/0.1s
3. CONTROLS AND MEASUREMENTS

Five key buttons allow for local management of all relay's functions. A 8-digit high brightness alphanumerical display shows the relevant readings (xxxxxxxxx) (see synoptic table fig.1)

Fig.1

<table>
<thead>
<tr>
<th>MODE</th>
<th>SELECT</th>
<th>+ -</th>
<th>ENTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASURES</td>
<td>ACT MEAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LASTTRIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRIP NUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SET DISP</td>
<td>SETTINGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F→RELAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROGR</td>
<td>SETTINGS</td>
<td>PRO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F→RELAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST PRG</td>
<td>W/O TRIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WithTRIP</td>
<td>(*)</td>
<td></td>
</tr>
</tbody>
</table>

Measurements Display
- **ACT MEAS**: Actual measurement values
- **LASTTRIP**: Values measured at last
- **TRIP NUM**: N° of tripping for each

Setting Display
- **SETTINGS**: Display of setting
- **F→RELAY**: Display of configuration of output

Programming
- **PRO**: Setting of parameters
- **F→RELAY**: Configuration of output

Test modes
- **W/O TRIP**: Test with operation of signals
- **WithTRIP**: Test with operation of signals and output

(*) **Enabled only if input voltage is**

- **MODE SELECT**: Enables easy selection of different modes.
- **ENTER**: Enters the selected mode.
- **PROG. ENTER/RESET**: Changes mode between Programming and Running.

Key Functions
- **SELECT**: Chose which category of values within the chosen mode to display.
- **ENTER**: Allows activation of the selected mode.
- **+ -**: Used to select between Measurement and Setting modes.

When in Program mode, this button stores the newly selected value. If not in Program mode and the relay has tripped, this button resets the relay and all output contacts. If not tripped, this button restores the default display.
4. SIGNALIZATIONS

Eight signal leds (normally off) are provided:

a) Red LED	F	Flashing as soon as one of the two frequency control elements starts to operate
b) Red LED	U	As above, for the two voltage control elements
c) Red LED	Ed	As above, for the direct sequence voltage control element
d) Red LED	Es	As above, for the negative sequence voltage control element
e) Yellow LED	U/F	As above, for the V/Hz ratio control element
f) Red LED	Uo	As above, for the two zero sequence voltage control elements
g) Red LED	PRG./I.R.F.	Flashing when programming; lit-on in case of internal fault detected during relay's autotest.
h) Yellow LED	B.I.	Lit-on when a blocking signal input is present (BI).

The reset of the leds takes place as follows:

- Leds a,b,c,d,e,f: From flashing to off, when the start cause disappears. From lit-on to off, by the "ENTER/RESET" push button or via serial bus only if the tripping cause has been cleared.
- Leds g,h: From flashing/lit-on to off, automatically when the lit-on cause disappears.

In case of auxiliary power supply failure the status of the leds is recorded and reproduced when power supply is restored.
At switch-on of auxiliary power the relay performs an automatic self diagnostic test routine during which all signal leds are lit-on and the display shows the type of the relay.
If no internal fault has been detected, after a few seconds the leds are turned off and the display is turned to its default indication.
5. OUTPUT RELAYS

Five output relays are available (R1, R2, R3, R4, R5) for external signalization and trip.

a) - The relays R1, R2, R3, R4 are normally deenergized (energized on trip): one or more of them can be associated to one or more of the UM30’s functions (programmable configuration). One relay associated to more than one function will be operated by the function which is set to operate first.

The reset after trip can only take place if the relevant tripping cause has been cleared.

The reset function is programmable as follows:

- **Automatic instantaneous** (Rxtr AUT.)
- **Automatic after adjustable time delay** 0,1 to 9,9 sec. (Rxtr x.x s)
- **Manual** (Rxtr MAN.) : in this mode the reset is operated either by the ENTER/RESET push button on the relay’s front face or via serial bus

b) - The relay R5, normally energized, is not programmable and it is deenergized on:

- internal fault
- power supply failure
- during the programming

6. SERIAL COMMUNICATION (Optional: see relevant instruction manual)

The relays fitted with the serial communication option can be connected via a cable bus or (with proper adapters) a fiber optic bus for interfacing with a Personal Computer (type IBM or compatible).

All the operations which can be performed locally (for example reading of measured data and changing of relay’s settings) are also possible via the serial communication interface.

Furthermore the serial port allows the user to read the demand recording data.

The unit has a RS232 / RS485 interface and can be connected either directly to a P.C. via a dedicated cable or to a RS485 serial bus, thus having many relays to exchange data with a single master P.C. using the same physical serial line. A RS485/232 converter is available on request.

The communication protocol is MODBUS RTU (only functions 3, 4 and 16 are implemented).

Each relay is identified by its programmable address code (NodeAd) and can be called from the P.C. A dedicated communication software (MSCOM) for Windows 95/98/NT4 SP3 (or later) is available.

Please refer to the MSCOM instruction manual for more information.
7. DIGITAL INPUT

Two blocking inputs activated by external cold contacts are available at relay's terminal board.

- **Bl>** (terminals 1 - 2) : Inhibits the operation of the output relays controlled by the "over level" functions (F>, U>, Ed>, Es>, Uo>, Uo>>, U/F) as long as it is active. As soon as the blocking input is removed the output relays associated to functions actually in operation will trip either instantaneously or after the remaining time delay if any. (*)

- **Bl<** (terminals 1 - 3) : When active, inhibits the operation of all the "under level" functions (F<, U<, Ed<) including their timers. As soon as the blocking input is removed the timers of the functions eventually in operation, start counting and relevant output relays trip at the end of the set time delay. (*)

(*) If the blocking input is activated before the input quantity has overpassed the operation level of the function blocked, the timing does not start at all.

8. TEST

Besides the normal "WATCHDOG" and "POWERFAIL" functions, a comprehensive program of self-test and self-diagnostic provides:

- Diagnostic and functional test, with checking of program routines and memory's content, run every time the aux. power is switched-on: the display shows the type of relay and its version number.

- Dynamic functional test run during normal operation every 15 min. (relay's operation is suspended for less than ≤4 ms). If any internal fault is detected, the display shows a fault message, the Led "PROG/IRF" illuminates and the relay R5 is deenergized.

- Complete test activated by the keyboard or via the communication bus either with or without tripping of the output relays.
9. KEYBOARD AND DISPLAY OPERATION

All controls can be operated from relay's front or via serial communication bus.
The keyboard includes five hand operable buttons (MODE) - (SELECT) - (+) - (-) - (ENTER/RESET)
plus one indirect operable key (PROG) (see synoptic table a fig.1):

- **White key MODE**
 - When operated it enters one of the following operation modes indicated on the display:
 - **MEASURES** = Reading of all the parameters measured and of those recorded in the memory
 - **SET DISP** = Reading of the settings and of the configuration of the output relays as programmed.
 - **PROG** = Access to the programming of the settings and of relay configuration.
 - **TEST PROG** = Access to the manual test routines.

- **Green key SELECT**
 - When operated it selects one of the menus available in the actual operation MODE

- **Red key "+" AND "-"**
 - When operated they allow to scroll the different information available in the menu entered by the key SELECT

- **Yellow key ENTER/RESET**
 - It allows the validation of the programmed settings
 - the actuation of test programs
 - the forcing of the default display indication
 - the reset of signal Leds.

- **Indirect key**
 - Enables access to the programming.
10. READING OF MEASUREMENTS AND RECORDED PARAMETERS

Enter the MODE "MEASURE", SELECT the menu "ACT.MEAS" or "LAST TRIP" or "TRIP NUM", scroll available information by key "+" or "-" .

10.1 - ACT.MEAS

Actual values as measured during the normal operation. The values displayed are continuously refreshed.

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F xx.xx Hz</td>
<td>Input frequency : 40,00 - 70,00 Hz</td>
</tr>
<tr>
<td>UA xx V,kV</td>
<td>R.M.S. value of system's phase-to-phase voltage UA-B : 0-999V or 0-9,99kV or 0-999kV with automatic scale selection (kV showed as K)</td>
</tr>
<tr>
<td>UB xx V,kV</td>
<td>As above UB-C</td>
</tr>
<tr>
<td>UC xx V,kV</td>
<td>As above UC-A</td>
</tr>
<tr>
<td>Uo xxx %Un</td>
<td>Residual voltage at secondary of system's P.Ts. : 0,0-999,9V (Uo = 3 x Eo)</td>
</tr>
<tr>
<td>EA xx V,kV</td>
<td>R.M.S. value of system's phase A-to neutral voltage 0-999kV</td>
</tr>
<tr>
<td>EB xx V,kV</td>
<td>As above phase B</td>
</tr>
<tr>
<td>EC xx V,kV</td>
<td>As above phase C</td>
</tr>
<tr>
<td>Ed xxx %En</td>
<td>Direct sequence component of voltage as % of system's rated voltage: 0-999%</td>
</tr>
<tr>
<td>Es xxx %En</td>
<td>Negative sequence component of voltage as above</td>
</tr>
</tbody>
</table>

10.2 - LAST TRIP

Display of the function which caused the last tripping of the relay plus values of the parameters at the moment of tripping. The memory buffer is refreshed at each new relay tripping.

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cau: xxxx</td>
<td>Display of the time delayed function which has operated the last tripping</td>
</tr>
<tr>
<td>-O>A or O>B or O>C</td>
<td>1st zero sequence element for earth fault on phase A or B or C</td>
</tr>
<tr>
<td>O>>A or O>>B or O>>C</td>
<td>as above 2nd level</td>
</tr>
<tr>
<td>--Ed</td>
<td>Direct sequence voltage element</td>
</tr>
<tr>
<td>--Es</td>
<td>Negative sequence voltage element</td>
</tr>
<tr>
<td>--1(\phi)</td>
<td>V/Hz 1st element</td>
</tr>
<tr>
<td>--2(\phi)</td>
<td>V/Hz 2nd element</td>
</tr>
<tr>
<td>F xx.xx Hz</td>
<td>Frequency as measured at the instant of last trip</td>
</tr>
<tr>
<td>UA xxx V,kV</td>
<td>Voltage UA-B as measured at the instant of last trip</td>
</tr>
<tr>
<td>UB xxx V,kV</td>
<td>As above UB-C</td>
</tr>
<tr>
<td>UC xxx V,kV</td>
<td>As above UC-A</td>
</tr>
<tr>
<td>Uo xxx % Un</td>
<td>As above UO</td>
</tr>
<tr>
<td>Ed xxx %En</td>
<td>As above ED</td>
</tr>
<tr>
<td>Es xxx %En</td>
<td>As above ES</td>
</tr>
</tbody>
</table>
10.3 - TRIP NUM

Counters of the number of operations for each of the relay functions. The memory is non-volatile and can be cancelled only with a secret procedure.

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'</td>
<td>First frequency delayed element [1f]</td>
</tr>
<tr>
<td>f"</td>
<td>Second frequency delayed element [2f]</td>
</tr>
<tr>
<td>u'</td>
<td>First voltage delayed element [1u]</td>
</tr>
<tr>
<td>u"</td>
<td>Second voltage delayed element [2u]</td>
</tr>
<tr>
<td>Uo'</td>
<td>Low set residual voltage (3Eo) delayed element [1O]</td>
</tr>
<tr>
<td>Uo"</td>
<td>High set residual voltage (3Eo) delayed element [1O']</td>
</tr>
<tr>
<td>Ed</td>
<td>Direct sequence voltage delayed element [1Ed]</td>
</tr>
<tr>
<td>Es</td>
<td>Negative sequence voltage delayed element [1Es]</td>
</tr>
<tr>
<td>1Φ</td>
<td>V/Hz delayed 1st element [1U/F]</td>
</tr>
<tr>
<td>2Φ</td>
<td>V/Hz delayed 2nd element [2U/F]</td>
</tr>
</tbody>
</table>

11. READING OF PROGRAMMED SETTINGS AND RELAY'S CONFIGURATION

Enter the mode "SET DISP", select the menu "SETTINGS" or "F→RELAY", scroll information available in the menu by keys "+" or "+".

SETTINGS= values of relay's operation parameters as programmed
F→RELAY= output relays associated to the different functions as programmed.
12. PROGRAMMING

The relay is supplied with the standard default programming used for factory test. [Values here below reported in the “Display” column].

All parameters can be modified as needed in the mode PROG and displayed in the mode SET DISP.

Local Programming by the front face key board is enabled only if no input voltage is detected (main switch open).

Programming via the serial port is always enabled but a password is required to access the programming mode. The default password is the null string; in the standard application program for communication “MS-COM” it is also provided an emergency which can be disclosed on request only.

As soon as programming is enabled, the LED PRG/IRF flashes and the reclosing lock-out relay R5 is deenergized. Enter MODE “PROG” and SELECT either “SETTINGS” for programming of parameters or “F→RELAY” for programming of output relays configuration; enable programming by the indirect operation key PROG.

The key SELECT now scrolls the available parameters. By the key (+), (-) the displayed values can be modified; to speed up parameter’s variation press the key SELECT while “+” or “-” are pressed.

Press key “ENTER/RESET” to validate the set values.

12.1 - PROGRAMMING OF FUNCTIONS SETTINGS

Mode PROG menu SETTINGS. (Production standard settings here under shown).

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
<th>Setting Range</th>
<th>Step</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fn 50 Hz</td>
<td>System frequency</td>
<td>50-60 Hz</td>
<td>10 Hz</td>
<td></td>
</tr>
<tr>
<td>UnP 10 kV</td>
<td>Rated primary phase-to-phase voltage of system’s P.Ts.</td>
<td>0.10 - 655 kV</td>
<td>0.01 kV</td>
<td></td>
</tr>
<tr>
<td>UnS 100 V</td>
<td>Rated secondary phase-to-phase voltage of system’s P.Ts</td>
<td>100 - 400 V</td>
<td>1 V</td>
<td></td>
</tr>
<tr>
<td>1φ> 1.2 pU</td>
<td>Trip level of the V/Hz 1st element</td>
<td>1 - 2 Dis 0.1 pU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 5.0</td>
<td>Time delay coefficient of the function 1φ></td>
<td>0.5 - 5 0.1 -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2φ> 1.2 pU</td>
<td>Trip level of the V/Hz 2nd element</td>
<td>1 - 2 Dis 0.1 pU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t2φ 5.0 s</td>
<td>Time delay of the function 2φ> definite time</td>
<td>0.1 - 60 0.1 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fn +/- f’</td>
<td>Operation mode of the first frequency control element</td>
<td>+/- +/- +/- +/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>= underfrequency</td>
<td>+/- +/- +/- +/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>= overfrequency</td>
<td>+/- +/- +/- +/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+/-</td>
<td>= under/over frequency</td>
<td>+/- +/- +/- +/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dis</td>
<td>= function is deactivated</td>
<td>+/- +/- +/- +/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>Description</td>
<td>Setting Range</td>
<td>Step</td>
<td>Unit</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>f'</td>
<td>Trip differential level of the 1st frequency control element</td>
<td>0.05 – 9.99</td>
<td>0.01</td>
<td>Hz</td>
</tr>
<tr>
<td>tf'</td>
<td>Trip time delay of first frequency control element</td>
<td>0.1 – 60.0</td>
<td>0.1</td>
<td>s</td>
</tr>
<tr>
<td>F</td>
<td>Operation mode of the second freq. control element</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f''</td>
<td>Trip differential level of the 2nd freq. element</td>
<td>0.05 – 9.99</td>
<td>0.01</td>
<td>Hz</td>
</tr>
<tr>
<td>tf''</td>
<td>Trip time delay of 2nd freq. control element</td>
<td>0.1 – 60</td>
<td>0.1</td>
<td>s</td>
</tr>
<tr>
<td>F27/59</td>
<td>Operation of function 27/59 on phase-to-phase voltage (U) or phase-to-neutral voltage (E)</td>
<td>U - E</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>u'</td>
<td>Trip differential level of the 1st voltage control element</td>
<td>5 - 90</td>
<td>1</td>
<td>%Un</td>
</tr>
<tr>
<td>tu'</td>
<td>Trip time delay of 1st voltage control element</td>
<td>0.1 – 60</td>
<td>0.1</td>
<td>s</td>
</tr>
<tr>
<td>Un</td>
<td>Operation mode of the first voltage control element</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u''</td>
<td>Trip differential level of the 2nd voltage control element</td>
<td>5 - 90</td>
<td>1</td>
<td>%Un</td>
</tr>
<tr>
<td>tu''</td>
<td>Time delay of 2nd voltage control element</td>
<td>0.1 – 60</td>
<td>0.1</td>
<td>s</td>
</tr>
<tr>
<td>Edn</td>
<td>Operation mode of the direct sequence voltage element</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed</td>
<td>Trip differential level of the direct sequence element</td>
<td>5 - 90</td>
<td>1</td>
<td>%En</td>
</tr>
<tr>
<td>lEd</td>
<td>Trip time delay of the direct sequence element</td>
<td>0.1 – 60</td>
<td>0.1</td>
<td>s</td>
</tr>
<tr>
<td>Es</td>
<td>Trip level of the negative sequence voltage element</td>
<td>1-99-Dis</td>
<td>1</td>
<td>%En</td>
</tr>
<tr>
<td>tEs</td>
<td>Trip time delay of the negative sequence element</td>
<td>0.1 – 60</td>
<td>0.1</td>
<td>s</td>
</tr>
<tr>
<td>Uo'</td>
<td>Trip level of the low-set residual voltage (3xEo) element (Volts at PT's secondary)</td>
<td>1 - 99 - Dis</td>
<td>1</td>
<td>%Un</td>
</tr>
<tr>
<td>to'</td>
<td>Trip time delay of low-set residual voltage element</td>
<td>0.05-60</td>
<td></td>
<td>s</td>
</tr>
<tr>
<td>Uo''</td>
<td>Trip level of the high-set residual voltage element</td>
<td>1 - 99 - Dis</td>
<td>1</td>
<td>%Un</td>
</tr>
<tr>
<td>to''</td>
<td>Trip time delay of high-set residual voltage element</td>
<td>0.05 – 9.9</td>
<td>0.05</td>
<td>s</td>
</tr>
<tr>
<td>NodAd</td>
<td>Identification number for connection on serial communication bus</td>
<td>1 - 250</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

The setting Dis indicates that the function is disactivated.
12.2 - PROGRAMMING THE CONFIGURATION OF OUTPUT RELAYS

Mode PROG menu F→RELAY (Production standard settings here under shown).
The key "+" operates as cursor; it moves through the digits corresponding to the four programmable relays in the sequence 1,2,3,4,(1= relay R1, etc.) and makes start flashing the information actually present in the digit. The information present in the digit can be either the number of the relay (if this was already associated to the function actually on programming) or a dot (·) if the relay was not yet addressed.

The key "-" changes the existing status from the dot to the relay number or viceversa.

<table>
<thead>
<tr>
<th>Display</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'</td>
<td>Instantaneous element of 1st frequency level. Minimum time delay 80ms. operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>tl'</td>
<td>As above, time delayed element. operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>f''</td>
<td>Instantaneous element of 2nd frequency level. Minimum time delay 80ms. operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>t1''</td>
<td>As above, time delayed element. operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>u'</td>
<td>Instantaneous element of 1st voltage level operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>tu'</td>
<td>As above, time delayed element. operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>u''</td>
<td>Instantaneous element of 2nd voltage level operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>tu''</td>
<td>As above, time delayed element. operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>Uo'</td>
<td>Instantaneous elements of low-set earth fault level operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>to'</td>
<td>As above, time delayed element operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>Uo''</td>
<td>Instantaneous element of high-set earth fault level operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>to''</td>
<td>As above, time delayed element operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>Ed</td>
<td>Instantaneous element of direct sequence voltage level operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>tEd</td>
<td>As above, time delayed element operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>Es</td>
<td>Instantaneous element of negative seq. voltage level operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>tEs</td>
<td>As above, time delayed element operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>1Φ</td>
<td>Instantaneous element of the 1Φ> element (only one or more whatever combination). operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>t1Φ</td>
<td>As above, time delayed 1Φ> element operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>2Φ</td>
<td>Instantaneous element of the 2Φ> element operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>t2Φ</td>
<td>As above, time delayed 2Φ> element operate relay R1,R2,R3,R4.</td>
</tr>
<tr>
<td>R1tr</td>
<td>Reset time delay of output relay R1 can be:</td>
</tr>
<tr>
<td></td>
<td>- instantaneous (R1tr Aut.)</td>
</tr>
<tr>
<td></td>
<td>- time delayed (R1tr 0,1-9,9 s) step 0,1 s (3 s delay showed)</td>
</tr>
<tr>
<td></td>
<td>- manual (R1tr Man.)</td>
</tr>
<tr>
<td>R2tr</td>
<td>As above for relay R2.</td>
</tr>
<tr>
<td>R3tr</td>
<td>As above for relay R3.</td>
</tr>
<tr>
<td>R4tr</td>
<td>As above for relay R4.</td>
</tr>
</tbody>
</table>
13. MANUAL AND AUTOMATIC TEST OPERATION

13.1 Mode "TESTPROG" subprogram "W/O TRIP"

Operation of the yellow key activates a complete test of the electronics and the process routines. All the leds are lit-on and the display shows (TEST RUN). If the test routine is successfully completed the display switches-over to the default reading (FxxxxxHz). If an internal fault is detected, the display shows the fault identification code and the relay R5 is deenergized. This test can be carried-out even during the operation of the relay without affecting the relay tripping in case a fault takes place during the test itself.

13.2 Mode "TESTPROG" subprogram "WithTRIP"

Access to this program is enabled only if the voltage measured is zero (breaker open). Pressing the yellow key the display shows "TEST RUN?". A second operation of the yellow key starts a complete test which also includes the activation of all the output relays. The display shows (TEST RUN) with the same procedure as for the test with W/O TRIP. Every 15 min during the normal operation the relay automatically initiates an auto test procedure (duration ≤ 10ms). If any internal fault is detected during the auto test, the relay R5 is deenergized, the relevant led is activated and the fault code is displayed.

- Further operation of key SELECT instead of the TEST programs gives the indication of the version and production date of the firmware.

![WARNING]

Running the WithTRIP test will operate all of the output relays. Care must be taken to ensure that no unexpected or harmful equipment operations will occur as a result of running this test. It is generally recommended that this test be run only in a bench test environment or after all dangerous output connections are removed.

14. MAINTENANCE

No maintenance is required. Periodically a functional check-out can be made with the test procedures described under MANUAL TEST chapter. In case of malfunctioning please contact Microelettrica Scientifica Service or the local Authorised Dealer mentioning the relay's Serial No reported in the label on relays enclosure.

15. POWER FREQUENCY INSULATION TEST

Every relay individually undergoes a factory insulation test according to IEC255-5 standard at 2 kV, 50 Hz 1min. Insulation test should not be repeated as it unusefully stresses the dielectrics. When doing the insulation test, the terminals relevant to serial output must always be short circuited to ground. When relays are mounted in switchboards or relay boards that have to undergo the insulation tests, the relay modules must be drawn-out of their enclosures and the test must only include the fixed part of the relay with its terminals and the relevant connections. This is extremely important as discharges eventually tacking place in other parts or components of the board can severely damage the relays or cause damages, not immediately evident to the electronic components.
16. ELECTRICAL CHARACTERISTICS

APPROVAL: CE – RINA – UL and CSA approval File : E202083

REFERENCE STANDARDS

- **Dielectric test voltage**
 IEC 60255-5
 2kV, 50/60Hz, 1 min.

- **Impulse test voltage**
 IEC 60255-5
 5kV (c.m.), 2kV (d.m.) – 1,2/50µs

- **Insulation resistance**
 > 100MΩ

Environmental Std. Ref. (IEC 68-2-1 - 68-2-2 - 68-2-33)

- **Operation ambient temperature**
 -10°C / +55°C

- **Storage temperature**
 -25°C / +70°C

- **Humidity**
 IEC68-2-3 RH 93% Without Condensing AT 40°C

CE EMC Compatibility (EN50081-2 - EN50082-2 - EN50263)

- **Electromagnetic emission**
 EN55022 industrial environment

- **Radiated electromagnetic field immunity test**
 IEC61000-4-3 level 3
 80-1000MHz 10V/m

- **Conducted disturbances immunity test**
 IEC61000-4-6 level 3
 0.15-80MHz 10V

- **Electrostatic discharge test**
 IEC61000-4-2 level 4
 6kV contact / 8kV air

- **Pulse magnetic field**
 IEC61000-4-9
 1000A/m, 50/60Hz

CHARACTERISTICS

- **Accuracy at reference value of influencing factors**
 2% Un for measure
 2% +/- 10ms for times

- **Rated Voltage**
 (100 ÷ 400)Vac phase to phase

- **Voltage overload**
 500Vac continuous

- **Burden on voltage input**
 0.2 VA /phase at Vn

- **Average power supply consumption**
 8.5 VA

- **Output relays**
 rating 5 A; Vn = 380 V
 A.C. resistive switching = 1100W (380V max)
 make = 30 A (peak) 0.5 sec.
 break = 0.3 A, 110 Vcc,
 L/R = 40 ms (100.000 op.)

Microelettrica Scientifica S.p.A. - 20089 Rozzano (MI) - Italy - Via Alberelle, 56/68
Tel. (##39) 02 575731 - Fax (##39) 02 57510940
http://www.microelettrica.com
e-mail : ute@microelettrica.com

The performances and the characteristics reported in this manual are not binding and can modified at any moment without notice
17. CONNECTION DIAGRAM (SCE1342 Rev.5 Standard Output)

17.1 CONNECTION DIAGRAM (SCE1451 Rev.2 Double Output)
18. WIRING THE SERIAL COMMUNICATION BUS (SCE1309 Rev.0)

Connection to RS485

- **Relay**
 - `S+`
 - `S-`
 - `C`

- **RS485**
- **RS232**

Fiber Optic Connection

- **Relay**
 - `S+`
 - `S-`
 - `C`

- **Fiber**
- **RS485**
- **RS232**

To other relays in parallel (max. 31 units)

To other relays in series (max. 200 units)
19. TIME CURRENT CURVES V/Hz (TU0326 Rev.1)

CARATTERISTICA DI INTERVENTO

TIME/V:Hz CURVES

\[
t = \frac{K}{(\frac{V}{Hz} - 1)\ pU} + 0.5
\]

\[
K = (0.5 \div 5)
\]

\[
1\Phi > = (1 \div 2)\ pU
\]

\[
2\Phi > = (1 \div 2)\ pU
\]

\[
t2\Phi = (0.1 \div 60)\ s
\]
20. DIRECTION FOR PCB’S DRAW-OUT AND PLUG-IN

20.1 Draw-out

Rotate clockwise the screws ① and ② in the horizontal position of the screws-driver mark. Draw-out the PCB by pulling on the handle ③.

20.2 Plug-in

Rotate clockwise the screws ① and ② in the horizontal position of the screws-driver mark. Slide-in the card on the rails provided inside the enclosure. Plug-in the card completely and by pressing the handle to the closed position. Rotate anticlockwise the screws ① and ② with the mark in the vertical position (locked).
21. OVERALL DIMENSIONS / MOUNTING

PANEL CUT-OUT 113x142 (LxH)

View of Rear
Terminal Connection
22. KEYBOARD OPERATIONAL DIAGRAM

- **MODE**
- **SEL**
- **TEST/PROG**
- **PRG**
- **SETTINGS**
- **Sele**
- **(F-RELAy)**
- **PRG**
- **ENT**
- **(W/OUT TRIP)**
- **ENT**
- **(WITH TRIP)**

In modo programmazione

- Value display of the relays

SEL (PROGR)

SEL (SET/DISP)

SEL (MEASURES)

SEL (ACT MEAS) (LastTrip) (TRIPNUM)

U=0

U ≠ 0

ENT

U0

Fxx.xxHz

UAxxxxxV

UBxxxxxV

UCxxxxxV

ED

EDxxx%En

Esxxx%En

Uoxxx%Un

Uo>xxxxx

φ

φφ

R1tr

R2tr

R3tr

R4tr

φφ

φφ

F27/59 x
23. Setting Form – Commissioning Test Record

<table>
<thead>
<tr>
<th>Relay Type</th>
<th>UM30-A</th>
<th>Station:</th>
<th>Circuit:</th>
<th>Date:</th>
<th>Relay Serial Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>24V(-20%) / 110V(+15%) a.c.</td>
<td>24V(-20%) / 125V(+20%) d.c.</td>
<td>Rated Voltage:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80V(-20%) / 220V(+15%) a.c.</td>
<td>90V(-20%) / 250V(+20%) d.c.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RELAY PROGRAMMING

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Setting Range</th>
<th>Default Setting</th>
<th>Actual Setting</th>
<th>Test Result</th>
<th>Pick-up</th>
<th>Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fn</td>
<td>System frequency</td>
<td>50-60 Hz</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UnP</td>
<td>Rated primary phase-to-phase voltage of system's P.Ts.</td>
<td>0.10 - 655 kV</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UnS</td>
<td>Rated secondary phase-to-phase voltage of system's P.Ts.</td>
<td>100 - 400 V</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Φ></td>
<td>Trip level of the V/Hz 1st element</td>
<td>1 - 2 - Dis pU</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Time delay coefficient of the function 1Φ></td>
<td>0.5 - 5</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Φ></td>
<td>Trip level of the V/Hz 2nd element</td>
<td>1 - 2 - Dis pU</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2Φ</td>
<td>Time delay of the function 2Φ> definite time</td>
<td>0.1 - 60 s</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fn</td>
<td>Operation mode of the first frequency control element</td>
<td>- +/− Dis f'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>Trip differential level of the 1st frequency control element</td>
<td>0.05 – 9.99 Hz</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l'</td>
<td>Trip time delay of first frequency control element</td>
<td>0.1 - 60.0 s</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fn</td>
<td>Operation mode of the second freq. control element</td>
<td>- +/− Dis f''</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l''</td>
<td>Trip differential level of the 2nd freq. element</td>
<td>0.05 – 9.99 Hz</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l''</td>
<td>Trip time delay of 2nd freq. control element</td>
<td>0.1 - 60 s</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F27/59</td>
<td>Operation of function 27/59 on phase-to-phase voltage (U) or phase-to-neutral voltage (E)</td>
<td>U - E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un</td>
<td>Operation mode of the first voltage control element</td>
<td>- +/− Dis u'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u'</td>
<td>Trip differential level of the 1st voltage control element</td>
<td>5 - 90 %Un</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tU'</td>
<td>Trip time delay of 1st voltage control element</td>
<td>0.1 - 60 s</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un</td>
<td>Operation mode of the 2nd voltage control element</td>
<td>- +/− Dis u''</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u''</td>
<td>Trip differential level of the 2nd voltage control element</td>
<td>5 - 90 %Un</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tU''</td>
<td>Time delay of 2nd voltage control element</td>
<td>0.1 - 60 s</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edn</td>
<td>Operation mode of the direct sequence voltage element</td>
<td>- +/− Dis Ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed</td>
<td>Trip differential level of the direct sequence element</td>
<td>5 - 90 %En</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed</td>
<td>Trip time delay of the direct sequence element</td>
<td>0.1 - 60 s</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Es</td>
<td>Trip level of the negative sequence voltage element</td>
<td>1-99-Dis %En</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEs</td>
<td>Trip time delay of the negative sequence element</td>
<td>0.1 - 60 s</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uo'</td>
<td>Trip level of the low-set residual voltage (3xEo) element (Volts at PT's secondary)</td>
<td>1 - 99 - Dis %Un</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Io'</td>
<td>Trip time delay of low-set residual voltage element</td>
<td>0.05-60 s</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uo''</td>
<td>Trip level of the high-set residual voltage element</td>
<td>1 - 99 - Dis %Un</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Io''</td>
<td>Trip time delay of high-set residual voltage element</td>
<td>0.05 – 9.9 s</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NodAd</td>
<td>Identification number for connection on serial communication bus</td>
<td>1 - 250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright 1996 - Microelettrica Scientifica S.p.A.
CONFIGURATION OF OUTPUT RELAYS

<table>
<thead>
<tr>
<th>Protect. Element</th>
<th>Output Relays</th>
<th>Description</th>
<th>Protect. Element</th>
<th>Output Relays</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'</td>
<td>-</td>
<td>As above, time delayed element.</td>
<td>f'</td>
<td></td>
</tr>
<tr>
<td>f'</td>
<td>1</td>
<td>Instantaneous element of 2nd frequency level</td>
<td>f'</td>
<td></td>
</tr>
<tr>
<td>f'</td>
<td>-</td>
<td>As above, time delayed element.</td>
<td>f'</td>
<td></td>
</tr>
<tr>
<td>f'</td>
<td>-</td>
<td>Instantaneous element of 1st voltage level</td>
<td>f'</td>
<td></td>
</tr>
<tr>
<td>u'</td>
<td>-</td>
<td>Instantaneous element of 1st voltage level</td>
<td>u'</td>
<td></td>
</tr>
<tr>
<td>u'</td>
<td>1</td>
<td>As above, time delayed element.</td>
<td>u'</td>
<td></td>
</tr>
<tr>
<td>u''</td>
<td>-</td>
<td>Instantaneous element of 2nd voltage level</td>
<td>u''</td>
<td></td>
</tr>
<tr>
<td>u''</td>
<td>2</td>
<td>As above, time delayed element.</td>
<td>u''</td>
<td></td>
</tr>
<tr>
<td>Uo></td>
<td>-</td>
<td>Instantaneous elements of low-set earth fault</td>
<td>Uo></td>
<td></td>
</tr>
<tr>
<td>Uo></td>
<td>1</td>
<td>As above, time delayed element</td>
<td>Uo></td>
<td></td>
</tr>
<tr>
<td>Uo>></td>
<td>-</td>
<td>Instantaneous element of high-set earth fault</td>
<td>Uo>></td>
<td></td>
</tr>
<tr>
<td>Uo>></td>
<td>3</td>
<td>As above, time delayed element</td>
<td>Uo>></td>
<td></td>
</tr>
<tr>
<td>Ed</td>
<td>-</td>
<td>Instantaneous element of direct sequence voltage level</td>
<td>Ed</td>
<td></td>
</tr>
<tr>
<td>Es</td>
<td>-</td>
<td>As above, time delayed element.</td>
<td>Ed</td>
<td></td>
</tr>
<tr>
<td>Es</td>
<td>3</td>
<td>Instantaneous element of negative seq. voltage level</td>
<td>Es</td>
<td></td>
</tr>
<tr>
<td>t1Φ</td>
<td>-</td>
<td>As above, time delayed 1Φ element</td>
<td>t1Φ</td>
<td></td>
</tr>
<tr>
<td>t1Φ</td>
<td>4</td>
<td>As above, time delayed 1Φ element</td>
<td>t1Φ</td>
<td></td>
</tr>
<tr>
<td>t2Φ</td>
<td>-</td>
<td>Instantaneous element of the 2Φ element</td>
<td>t2Φ</td>
<td></td>
</tr>
<tr>
<td>t2Φ</td>
<td>3</td>
<td>As above, time delayed 2Φ element</td>
<td>t2Φ</td>
<td></td>
</tr>
<tr>
<td>R1tr</td>
<td>-</td>
<td>Reset time delay of output relay R1</td>
<td>R1tr</td>
<td></td>
</tr>
<tr>
<td>R2tr</td>
<td>Aut.</td>
<td>Reset time delay of output relay R2</td>
<td>R2tr</td>
<td></td>
</tr>
<tr>
<td>R3tr</td>
<td>Man.</td>
<td>Reset time delay of output relay R3</td>
<td>R3tr</td>
<td></td>
</tr>
<tr>
<td>R4tr</td>
<td>Aut.</td>
<td>Reset time delay of output relay R4</td>
<td>R4tr</td>
<td></td>
</tr>
</tbody>
</table>

Commissioning Engineer: ___________________________ Date: ________________

Customer Witness: ___________________________ Date: ________________